One some Pradoxical Point Sets in Different Models of Set Theory

Mariam Beriashvili

¹I. Vekua Institute of Applied Mathematics Tbilisi State University

²Georgian Technical University

February 2, 2017

Paradoxical Subsets of R in ZFC

• Vitali Set, 1905

Any selector of the quotient-set \mathbf{R}/\mathbf{Q} (where \mathbf{Q} stands for the field of all rational numbers) is a Vitali Set.

• Vitali Set, 1905

Any selector of the quotient-set \mathbf{R}/\mathbf{Q} (where \mathbf{Q} stands for the field of all rational numbers) is a Vitali Set.

• Hamel Bases, 1905

Any bases for the real line ${\bf R}$ considered as a vector space over the field ${\bf Q}$ is a Hamel Bases.

• Vitali Set, 1905

Any selector of the quotient-set \mathbf{R}/\mathbf{Q} (where \mathbf{Q} stands for the field of all rational numbers) is a Vitali Set.

• Hamel Bases, 1905

Any bases for the real line ${\bf R}$ considered as a vector space over the field ${\bf Q}$ is a Hamel Bases.

 Bernstein Set, 1908 We say that X ⊂ R is a Bernstein set if, for every non-empty perfect set P ⊂ R, both intersections

 $P \cap X$ and $P \cap (\mathbf{R} \setminus X)$

are nonempty.

• Luzini Set, 1914

A set $X \subset \mathbb{R}$ is a Luzin set if X is uncountable and, for every first category set $Y \subset \mathbb{R}$, the inequality $\operatorname{card}(X \cap Y) \leq \omega$ holds true.

• Luzini Set, 1914

A set $X \subset \mathbb{R}$ is a Luzin set if X is uncountable and, for every first category set $Y \subset \mathbb{R}$, the inequality $\operatorname{card}(X \cap Y) \leq \omega$ holds true.

Sierpiński Set, 1924

A set $X \subset \mathbb{R}$ is called a Sierpiński set if X is uncountable and, for every λ -measure zero set $Y \subset \mathbb{R}$, the inequality $\operatorname{card}(X \cap Y) \leq \omega$ holds true.

• There exists a subset X of **R** such that X is simultaneously a Vitali set and a Bernstein set.

- There exists a subset X of **R** such that X is simultaneously a Vitali set and a Bernstein set.
- There exists a Hamel basis of **R** which simultaneously is a Bernstein set.

- There exists a subset X of **R** such that X is simultaneously a Vitali set and a Bernstein set.
- There exists a Hamel basis of **R** which simultaneously is a Bernstein set.
- There exists no Hamel basis in **R** which simultaneously is a Vitali set.

• There exists no a subset X of **R** such that X is simultaneously a Luzini set (Sierpiński Set) and a Bernstein set.

- There exists no a subset X of **R** such that X is simultaneously a Luzini set (Sierpiński Set) and a Bernstein set.
- There exists a Hamel basis of **R** which simultaneously is a Luzini set (Sierpiński Set).

- There exists no a subset X of **R** such that X is simultaneously a Luzini set (Sierpiński Set) and a Bernstein set.
- There exists a Hamel basis of **R** which simultaneously is a Luzini set (Sierpiński Set).
- There exists no Vitali set **R** which simultaneously is a Luzini set (Sierpiński Set).

Some Auxiliary Notions

Let *E* be a set and let \mathcal{M} be a class of measures on *E* (we assume, in general, that the domains of measures from \mathcal{M} are various σ -algebras of subsets of *E*).

Definition

 We shall say that a set X ⊂ E is absolutely measurable with respect to M if, for an arbitrary measure μ ∈ M, the set X is measurable with respect to μ.

Some Auxiliary Notions

Let *E* be a set and let \mathcal{M} be a class of measures on *E* (we assume, in general, that the domains of measures from \mathcal{M} are various σ -algebras of subsets of *E*).

Definition

- We shall say that a set X ⊂ E is absolutely measurable with respect to M if, for an arbitrary measure μ ∈ M, the set X is measurable with respect to μ.
- We shall say that a set $Y \subset E$ is **relatively measurable** with respect to the class \mathcal{M} if there exists at least one measure $\mu \in \mathcal{M}$ such that Y is measurable with respect to μ .

Some Auxiliary Notions

Let *E* be a set and let \mathcal{M} be a class of measures on *E* (we assume, in general, that the domains of measures from \mathcal{M} are various σ -algebras of subsets of *E*).

Definition

- We shall say that a set X ⊂ E is absolutely measurable with respect to M if, for an arbitrary measure µ ∈ M, the set X is measurable with respect to µ.
- We shall say that a set $Y \subset E$ is **relatively measurable** with respect to the class \mathcal{M} if there exists at least one measure $\mu \in \mathcal{M}$ such that Y is measurable with respect to μ .
- We shall say that a set Z ⊂ E is absolutely nonmeasurable with respect to M if there exists no measure μ ∈ M such that Z is measurable with respect to μ.

Let *E* be a set, μ be a nonzero σ -finite complete measure on some σ -algebra of subsets of *E*, and let \mathcal{I} be a σ -ideal of subsets of *E* such that

 $(\forall Y \in \mathcal{I})(\mu_*(Y) = 0),$

where μ_* stands, as usual, for the inner measure canonically associated with μ . Denote $S = \operatorname{dom}(\mu)$ and consider the σ -algebra S' of subsets of E, generated by the union $S \cup I$, i.e., $S' = \sigma(S \cup I)$. Obviously, any set $Z \in S'$ can be represented in the form

$$Z=(X\cup Y_1)\setminus Y_2,$$

where $X \in S$ and both sets Y_1 and Y_2 are some members of I. Then

$$\mu'(Z) = \mu'((X \cup Y_1) \setminus Y_2) = \mu(X).$$

Lemma

If a set $Z \subset \mathbb{R}$ is λ -measurable and $\lambda(Z) > 0$, then Z contains a subset Y such that $card(Y) = \mathbf{c}$ and $\lambda(Y) = 0$.

Lemma

Any member of the σ -ideal generated by the family of all Sierpiński subsets of \mathbb{R} has inner λ -measure zero.

There exists a translation invariant measure μ on **R** such that:

- μ is an extension of the Lebesgue measure λ ;
- all Sierpinski subsets of **R** are measurable with respect to μ and all of them have μ -measure zero.

Definition

We say that a function f is absolutely non-measurable with respect to M if there exists no one measure μ such that f is μ -measurable.

Theorem (Kharazishvili)

Let $f : E \to \mathbf{R}$ be a function. The following two assertions are equivalent:

- f is absolutely nonmeasurable with respect to M(E)
- 2 ran(f) is universal measure zero and $card(f^{-1}(t)) \le \omega$ for each $t \in \mathbf{R}$.

Theorem(Kharazishvili)

Suppose that there exists a well-ordering \leq of [0,1] for which the following two conditions are fulfilled

- \preceq is isomorphic to the natural well-ordering of ω_1
- the graph of \leq is a projective subset of $[0,1]^2$.

Then there exists a function

$$\phi: [\mathbf{0},\mathbf{1}] \rightarrow [\mathbf{0},\mathbf{1}]$$

whose graph is a projective subset of $[0,1]^2$ and which is absolutely nonmeasurabel with respect to the class M([0,1]) of all σ -finite diffused nonzero measures on [0,1]

- M. Beriashvili, Measurable properties of certain paradoxical subsets of the real line, Georgian Mathematical Journal, Vol. 23, Iss. 1, 2016;
- M. Beriashvili, On some paradoxical subsets of the real line, Georgian International Journal of Science and Technology, Volume 6, Number 4, 2014
- A. Kharazishvili, To the existence of projective absolutely nonmeasurable functions, Proc of A. Razmadze Math. Inst., Vol. 166(2014), pp. 95-102

Thank You for Your Attention!