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Paradoxical Subsets of R in ZFC

Vitali Set, 1905
Any selector of the quotient-set R/Q (where Q stands for the field of
all rational numbers) is a Vitali Set.

Hamel Bases, 1905
Any bases for the real line R considered as a vector space over the
field Q is a Hamel Bases.

Bernstein Set, 1908 We say that X ⊂ R is a Bernstein set if, for
every non-empty perfect set P ⊂ R, both intersections

P ∩ X and P ∩ (R \ X )

are nonempty.
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Paradoxical Subsets of R in ZFC + CH

Luzini Set, 1914
A set X ⊂ R is a Luzin set if X is uncountable and, for every first
category set Y ⊂ R, the inequality card(X ∩ Y ) ≤ ω holds true.

Sierpiński Set, 1924
A set X ⊂ R is called a Sierpiński set if X is uncountable and, for
every λ-measure zero set Y ⊂ R, the inequality card(X ∩ Y ) ≤ ω
holds true.
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Relationships between Paradoxical Sets

Theorem

There exists a subset X of R such that X is simultaneously a Vitali
set and a Bernstein set.

There exists a Hamel basis of R which simultaneously is a Bernstein
set.

There exists no Hamel basis in R which simultaneously is a Vitali set.
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Relationships between Paradoxical Sets

Theorem

There exists no a subset X of R such that X is simultaneously a
Luzini set (Sierpiński Set) and a Bernstein set.

There exists a Hamel basis of R which simultaneously is a Luzini set
(Sierpiński Set).

There exists no Vitali set R which simultaneously is a Luzini set
(Sierpiński Set).
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(Sierpiński Set).

There exists no Vitali set R which simultaneously is a Luzini set
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Some Auxiliary Notions

Let E be a set and let M be a class of measures on E (we assume, in
general, that the domains of measures from M are various σ-algebras of
subsets of E ).

Definition

We shall say that a set X ⊂ E is absolutely measurable with
respect to M if, for an arbitrary measure µ ∈M, the set X is
measurable with respect to µ.

We shall say that a set Y ⊂ E is relatively measurable with respect
to the class M if there exists at least one measure µ ∈M such that
Y is measurable with respect to µ.

We shall say that a set Z ⊂ E is absolutely nonmeasurable with
respect to M if there exists no measure µ ∈M such that Z is
measurable with respect to µ.
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Marczewski’s Method

Let E be a set, µ be a nonzero σ-finite complete measure on some
σ-algebra of subsets of E , and let I be a σ-ideal of subsets of E such that

(∀Y ∈ I)(µ∗(Y ) = 0),

where µ∗ stands, as usual, for the inner measure canonically associated
with µ. Denote S = dom(µ) and consider the σ-algebra S ′ of subsets of
E , generated by the union S ∪ I, i.e., S ′ = σ(S ∪ I). Obviously, any set
Z ∈ S ′ can be represented in the form

Z = (X ∪ Y1) \ Y2,

where X ∈ S and both sets Y1 and Y2 are some members of I. Then

µ′(Z ) = µ′((X ∪ Y1) \ Y2) = µ(X ).
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Some Auxiliary Lemmas

Lemma

If a set Z ⊂ R is λ-measurable and λ(Z ) > 0, then Z contains a subset Y
such that card(Y ) = c and λ(Y ) = 0.

Lemma

Any member of the σ-ideal generated by the family of all Sierpiński
subsets of R has inner λ-measure zero.
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Measurability of Sierpinski Sets

Theorem

There exists a translation invariant measure µ on R such that:

µ is an extension of the Lebesgue measure λ;

all Sierpinski subsets of R are measurable with respect to µ and all of
them have µ-measure zero.
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Absolutely non-measurable function

Definition

We say that a function f is absolutely non-measurable with respect to M
if there exists no one measure µ such that f is µ -measurable.

Theorem (Kharazishvili)

Let f : E → R be a function. The following two assertions are equivalent:

1 f is absolutely nonmeasurable with respect to M(E )

2 ran(f ) is universal measure zero and card(f −1(t)) ≤ ω for each t ∈ R.
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Theorem(Kharazishvili)

Suppose that there exists a well-ordering � of [0,1] for which the following
two conditions are fulfilled

� is isomorphic to the natural well-ordering of ω1

the graph of � is a projecive subset of [0, 1]2.

Then there exists a function

φ : [0, 1]→ [0, 1]

whose graph is a projective subset of [0, 1]2 and which is absolutely
nonmeasurabel with respect to the class M([0,1]) of all σ-finite diffused
nonzero measures on [0, 1]
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Thank You for Your Attention!
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